Unexported Functions
These are all functions for internal use only:
GenericCharacterTables.CharTable — TypeCharTable <: TableThe type for generic character tables. This is used to model generic character tables containing generic cyclotomic entries.
Examples
julia> g=generic_character_table("GL2")
Generic character table GL2
of order q^4 - q^3 - q^2 + q
with 4 irreducible character types
with 4 class types
with parameters (i, j, l, k)GenericCharacterTables.CharTable — Method(t::CharTable)(c::GenericCharacter)Return c as a generic character of t. This will only work if t is a version of the parent table of c with a more restricted congruence.
GenericCharacterTables.CyclotomicFac — TypeCyclotomicFac{T <: PolyRingElem}The type representing a factorization into cyclotomic polynomials.
GenericCharacterTables.GenericCharacter — TypeGenericCharacter <: AbstractGenericCharacterThe type for generic characters. These are the generic characters used in CharTable.
Examples
julia> g=generic_character_table("GL2");
julia> g[1]
Generic character of GL2
with parameters
k ∈ {1,…, q - 1}
of degree 1
with values
1: E(q - 1)^(2*i*k)
2: E(q - 1)^(2*i*k)
3: E(q - 1)^(i*k + j*k)
4: E(q - 1)^(i*k)GenericCharacterTables.GenericConjugacyClass — TypeGenericConjugacyClass <: AbstractGenericConjugacyClassThe type for generic conjugacy classes. These are the generic conjugacy classes used in CharTable.
GenericCharacterTables.GenericCyclo — TypeGenericCyclo <: RingElemThe type for generic cyclotomic numbers.
Examples
julia> S, E, q = generic_cyclotomic_ring();
julia> S(q; exponent=1//(q-1))
q*E(q - 1)GenericCharacterTables.GenericCycloFrac — TypeGenericCycloFracThe type for fractions of generic cyclotomic numbers.
Examples
julia> S, E, q = generic_cyclotomic_ring();
julia> a = S(q; exponent=1//(q-1))
q*E(q - 1)
julia> b = S(q^2; exponent=1//(q^2-1))
q^2*E(q^2 - 1)
julia> a//b
q*E(q - 1)//(q^2*E(q^2 - 1))GenericCharacterTables.GenericCycloRing — TypeGenericCycloRing <: RingThe ring of generic cyclotomic numbers.
Examples
julia> S, E, q = generic_cyclotomic_ring()
(Generic cyclotomic ring over Rational field, Generator of Generic cyclotomic ring over Rational field, q)
GenericCharacterTables.Parameter — TypeParameterA paramter of a generic character or class type unique up to a polynomial modulus. They are used in Parameters.
GenericCharacterTables.ParameterExceptions — TypeParameterExceptionsA collection of parameter exceptions used in GenericCycloFrac.
GenericCharacterTables.ParameterSubstitution — TypeParameterSubstitutionA substitution of paramters used in Parameters. They are generated by for example specclassparam!.
GenericCharacterTables.Parameters — TypeParametersParameters of generic characters and class types. This is used in GenericCharacter and CharTable and is only of internal use.
GenericCharacterTables.SimpleCharTable — TypeSimpleCharTable{T} <: TableThe type for simple generic character tables. This is used to model generic character tables containing polynomial entries. The type parameter T is the type of the table entries.
Examples
julia> g=generic_character_table("uniGL2")
Generic character table uniGL2
of order q^4 - q^3 - q^2 + q
with 2 irreducible character types
with 4 class types
without parametersGenericCharacterTables.SimpleGenericCharacter — TypeSimpleGenericCharacter <: AbstractGenericCharacterThe type for simple generic characters. These are the generic characters used in SimpleCharTable.
Examples
julia> g=generic_character_table("uniGL2")
Generic character table uniGL2
of order q^4 - q^3 - q^2 + q
with 2 irreducible character types
with 4 class types
without parameters
julia> g[1]
Generic character of uniGL2
of degree q
with values
1: q
2: 0
3: 1
4: -1GenericCharacterTables.SimpleGenericConjugacyClass — TypeSimpleGenericConjugacyClass <: AbstractGenericConjugacyClassThe type for simple generic conjugacy classes. These are the generic conjugacy classes used in SimpleCharTable.
AbstractAlgebra.Generic.normal_form — Methodnormal_form(f::ZZUPoly, m::Int64)Return a normal form of f modulo m, such that normal_form(f,m) is equal to normal_form(g,m) if and only if f and g are congruent modulo m.
Examples
julia> R=universal_polynomial_ring(ZZ);
julia> x=gen(R, :x);
julia> normal_form(4*x^2,6)
x^2 + 3*x
julia> normal_form(4*x^2-(x^2+3*x),6)
0
julia> normal_form(4*x^9+x^7,12)
x^3 + 4*x
julia> normal_form(4*x^9+x^7-(x^3+4*x),12)
0
Base.iszero — Methodiszero(x::GenericCycloFrac; ignore_exceptions::Bool=false)Return if x is zero. If ignore_exceptions is true then the exceptions of x will not be considered.
Base.length — Methodlength(a::CyclotomicFac)Return the number of factors of $a$, not including the unit.
Base.show — Methodshow(io::IO, c::AbstractGenericCharacter)Display a summary of the generic character c.
Examples
julia> g=generic_character_table("GL2");
julia> g[3]
Generic character of GL2
with parameters
k ∈ {1,…, q - 1}, l ∈ {1,…, q - 1} except -l + k ∈ (q - 1)ℤ
of degree q + 1
with values
1: (q + 1)*E(q - 1)^(i*l + i*k)
2: E(q - 1)^(i*l + i*k)
3: E(q - 1)^(i*l + j*k) + E(q - 1)^(i*k + j*l)
4: 0
julia> [g[3]]
1-element Vector{GenericCharacterTables.GenericCharacter}:
Generic character of GL2
Base.show — Methodshow(io::IO, c::AbstractGenericConjugacyClass)Display a summary of the generic character c.
Examples
julia> g=generic_character_table("GL2");
julia> conjugacy_class_type(g, 3)
Generic conjugacy class of GL2
with parameters
i ∈ {1,…, q - 1}, j ∈ {1,…, q - 1} except i - j ∈ (q - 1)ℤ
of order q^2 + q
with values
1: E(q - 1)^(i*k + j*k)
2: E(q - 1)^(i*k + j*k)
3: E(q - 1)^(i*l + j*k) + E(q - 1)^(i*k + j*l)
4: 0
julia> [conjugacy_class_type(g, 3)]
1-element Vector{GenericCharacterTables.GenericConjugacyClass}:
Generic conjugacy class of GL2
Base.show — Methodshow(io::IO, t::Table)Display a summary of the generic character table t.
Examples
julia> g=generic_character_table("GL2")
Generic character table GL2
of order q^4 - q^3 - q^2 + q
with 4 irreducible character types
with 4 class types
with parameters (i, j, l, k)
julia> [g]
1-element Vector{GenericCharacterTables.CharTable}:
Generic character table GL2
GenericCharacterTables.add_exception! — Methodadd_exception!(a::ParameterExceptions, exception::UPolyFrac)Include exception into a. This also removes all now redundant exceptions from a.
GenericCharacterTables.is_integer — Methodis_integer(x::UPolyFrac)Return if x represents an integer.
GenericCharacterTables.is_restriction — Methodis_restriction(x::ParameterExceptions)Return if x actually restricts something.
GenericCharacterTables.merge — Methodmerge(x::ParameterExceptions, y::ParameterExceptions)Return a new collection of parameter exceptions composed of x and y where all redundant exceptions are omitted.
GenericCharacterTables.nesum — Methodnesum(a::GenericCyclo, var::Int64, lower::Int64, upper::Union{Int64,UPoly})Return the sum of a, from var=lower to upper as GenericCycloFrac using the closed formular for geometric sums. If this is not possible an exception will be thrown.
Examples
julia> S, E, q = generic_cyclotomic_ring();
julia> R = base_ring(S);
julia> i = param(S, :i);
julia> a = S(Dict(1//(q-1)*i => R(1)))
E(q - 1)^i
julia> GenericCharacterTables.nesum(a, i, 1, q-1)
0
With exceptions:
1 ∈ (q - 1)ℤGenericCharacterTables.shift_char_parameters — Methodshift_char_parameters(t::CharTable, a::Union{Parameters,GenericCyclo,GenericCycloFrac}, steps::Int64)Replace all character parameters of t in a by their counterparts suffixed with steps.
This is done by shifting them steps*number_of_parameters(t) steps further in t.argumentring.
GenericCharacterTables.shift_class_parameters — Methodshift_class_parameters(t::CharTable, a::Union{Parameters,GenericCyclo,GenericCycloFrac}, steps::Int64)Replace all class parameters of t in a by their counterparts suffixed with steps.
This is done by shifting them steps*number_of_parameters(t) steps further in t.argumentring.
GenericCharacterTables.shrink — Methodshrink(a::GenericCycloFrac{<:NfPoly})Remove exceptions from a that follow from the others. And try to simplify the representation of a.