Algebra Homomorphisms

Singular.jl allows the creation of algebra homomorphisms of Singular polynomial rings over Nemo/Singular coefficient rings.

The default algebra homomorphism type in Singular.jl is the Singular SAlgHom type.

Additionally, a special type for the identity homomorphism has been implemented. The type in Singular.jl for the latter is SIdAlgHom.

All algebra homomorphism types belong directly to the abstract type AbstractAlgebraHomomorphism{T}.

Algebra Homomorphism functionality

Constructors

Given two Singular polynomial rings $R$ and $S$ over the same base ring, the following constructors are available for creating algebra homomorphisms.

Singular.AlgebraHomomorphismMethod
AlgebraHomomorphism(D::PolyRing, C::PolyRing, V::Vector)

Constructs an algebra homomorphism $f: D \to C$, where the $i$-th variable of $D$ is mapped to the $i$-th entry of $V$. $D$ and $C$ must be polynomial rings over the same base ring.

source
Singular.IdentityAlgebraHomomorphismMethod
IdentityAlgebraHomomorphism(R::PolyRing)

Constructs the canonical identity algebra homomorphism $id: D \to D$, where the $i$-th variable of $D$ is mapped to itself.

source

Examples

L = FiniteField(3, 2, String("a"))

R, (x, y, z, w) = PolynomialRing(L[1], ["x", "y", "z", "w"];
                             ordering=:negdegrevlex)

S, (a, b, c) = PolynomialRing(L[1], ["a", "b", "c"];
                             ordering=:degrevlex)

V = [a, a + b^2, b - c, c + b]

f = AlgebraHomomorphism(R, S, V)

Operating on objects

It is possible to act on polynomials and ideals via algebra homomorphisms.

Examples

R, (x, y, z, w) = PolynomialRing(Nemo.ZZ, ["x", "y", "z", "w"];
                             ordering=:negdegrevlex)

S, (a, b, c) = PolynomialRing(Nemo.ZZ, ["a", "b", "c"];
                             ordering=:degrevlex)

V = [a, a + b^2, b - c, c + b]

f = AlgebraHomomorphism(R, S, V)

id  = IdentityAlgebraHomomorphism(S)


J = Ideal(R, [x, y^3])

p = x + y^3 + z*w

K = f(J)

q = f(p)

Composition

AbstractAlgebra.composeMethod
compose(f::AbstractAlgebra.Map(Singular.SAlgHom),
                     g::AbstractAlgebra.Map(Singular.SAlgHom))

Returns an algebra homomorphism $h: domain(f) \to codomain(g)$, where $h = g(f)$.

source

A short command for the composition of $f$ and $g$ is f*g, which is the same as compose(f, g).

Examples

R, (x, y, z, w) = PolynomialRing(QQ, ["x", "y", "z", "w"];
                             ordering=:negdegrevlex)

S, (a, b, c) = PolynomialRing(QQ, ["a", "b", "c"];
                             ordering=:degrevlex)

V = [a, a + b^2, b - c, c + b]

W = [x^2, x + y + z, z*y]

f = AlgebraHomomorphism(R, S, V)

g = AlgebraHomomorphism(S, R, W)

idR  = IdentityAlgebraHomomorphism(R)

h1 = f*g

h2 = idR*f

h3 = g*idR

h4 = idR*idR

Preimages

AbstractAlgebra.preimageMethod
preimage(f::AbstractAlgebra.Map(SAlgHom), I::sideal)

Returns the preimage of the ideal $I$ under the algebra homomorphism $f$.

source
AbstractAlgebra.preimageMethod
preimage(f::AbstractAlgebra.Map(SIdAlgHom), I::sideal)

Returns the preimage of the ideal $I$ under the identity algebra homomorphism.

source

Examples

R, (x, y, z, w) = PolynomialRing(QQ, ["x", "y", "z", "w"];
                             ordering=:negdegrevlex)

S, (a, b, c) = PolynomialRing(QQ, ["a", "b", "c"];
                             ordering=:degrevlex)

I = Ideal(S, [a, a + b^2, b - c, c + b])

f = SAlgebraHomomorphism(R, S, gens(I))

idS  = IdentityAlgebraHomomorphism(S)

P1 = preimage(f, I)

P2 = preimage(idS, I)

K1 = kernel(f)

K2 = preimage(idS)