Ideals

Singular.jl allows the creation of ideals over a Singular polynomial ring. These are internally stored as a list of (polynomial) generators. This list of generators can also have the property of being a Groebner basis.

The default ideal type in Singular.jl is the Singular sideal type.

Ideals objects have a parent object which represents the set of ideals they belong to, the data for which is given by the polynomial ring their generators belong to.

The types of ideals and associated parent objects are given in the following table according to the library providing them.

LibraryElement typeParent type
Singularsideal{T}Singular.IdealSet{T}

These types are parameterised by the type of elements of the polynomial ring over which the ideals are defined.

All ideal types belong directly to the abstract type Module{T} and all the ideal set parent object types belong to the abstract type Set.

Ideal functionality

Singular.jl ideals implement standard operations one would expect on modules. These include:

  • Operations common to all AbstractAlgebra objects, such as parent, base_ring, elem_type, parent_type, parent, deepcopy, etc.

  • Addition

Also implements is the following operations one expects for ideals:

  • Multiplication

  • Powering

Below, we describe all of the functionality for Singular.jl ideals that is not included in this list of basic operations.

Constructors

Given a Singular polynomial ring $R$, the following constructors are available for creating ideals.

Ideal(R::PolyRing{T}, ids::spoly{T}...) where T <: Nemo.RingElem
Ideal(R::PolyRing{T}, ids::Vector{spoly{T}}) where T <: Nemo.RingElem

Construct the ideal over the polynomial ring $R$ whose (polynomial) generators are given by the given parameter list or array of polynomials, respectively. The list may be empty, resulting in the zero ideal.

Examples

julia> R, (x, y) = polynomial_ring(ZZ, ["x", "y"])
(Singular polynomial ring (ZZ),(x,y),(dp(2),C), spoly{n_Z}[x, y])

julia> I1 = Ideal(R, x*y + 1, x^2)
Singular ideal over Singular polynomial ring (ZZ),(x,y),(dp(2),C) with generators (x*y + 1, x^2)

julia> I2 = Ideal(R, [x*y + 1, x^2])
Singular ideal over Singular polynomial ring (ZZ),(x,y),(dp(2),C) with generators (x*y + 1, x^2)

Basic manipulation

AbstractAlgebra.gensMethod
gens(I::sideal)

Return the generators in the internal representation of the ideal $I$ as an array.

source

Singular.jl overloads the setindex! and getindex functions so that one can access the generators of an ideal using array notation.

I[n::Int]
Base.iszeroMethod
iszero(I::sideal)

Return true if the given ideal is algebraically the zero ideal.

source
Singular.is_zerodimMethod
is_zerodim(I::sideal)

Return true if the given ideal is zero dimensional, i.e. the Krull dimension of $R/I$ is zero, where $R$ is the polynomial ring over which $I$ is an ideal.

source
Singular.dimensionMethod
dimension(I::sideal{spoly{T}}) where T <: Nemo.RingElem

Given an ideal $I$ this function computes the Krull dimension of the ring $R/I$, where $R$ is the polynomial ring over which $I$ is an ideal. The ideal must be over a polynomial ring and a Groebner basis.

source
AbstractAlgebra.is_constantMethod
is_constant(I::sideal)

Return true if the given ideal is a constant ideal, i.e. generated by constants in the polynomial ring over which it is an ideal.

source
Singular.is_var_generatedMethod
is_var_generated(I::sideal)

Return true if each generator in the representation of the ideal $I$ is a generator of the polynomial ring, i.e. a variable.

source
LinearAlgebra.normalize!Method
normalize!(I::sideal)

Normalize the polynomial generators of the ideal $I$ in-place. This means to reduce their coefficients to lowest terms. In most cases this does nothing, but if the coefficient ring were the rational numbers for example, the coefficients of the polynomials would be reduced to lowest terms.

source
Singular.interreduceMethod
interreduce(I::sideal{S}) where {T <: Nemo.RingElem, S <: Union{spoly{T}, spluralg{T}}}

Interreduce the elements of I such that no leading term is divisible by another leading term. This returns a new ideal and does not modify the input ideal.

source

Examples

julia> R, (x, y) = polynomial_ring(ZZ, ["x", "y"])
(Singular polynomial ring (ZZ),(x,y),(dp(2),C), spoly{n_Z}[x, y])

julia> I = Ideal(R, x^2 + 1, x*y)
Singular ideal over Singular polynomial ring (ZZ),(x,y),(dp(2),C) with generators (x^2 + 1, x*y)

julia> n = number_of_generators(I)
2

julia> p = I[1]
x^2 + 1

julia> I[1] = 2x + y^2
y^2 + 2*x

julia> is_constant(I) == false
true

julia> is_var_generated(I) == false
true

julia> is_zerodim(I) == false
ERROR: Not a Groebner basis

julia> S, (u, v) = polynomial_ring(QQ, ["u", "v"])
(Singular polynomial ring (QQ),(u,v),(dp(2),C), spoly{n_Q}[u, v])

julia> J = Ideal(S, u^2 + 1, u*v)
Singular ideal over Singular polynomial ring (QQ),(u,v),(dp(2),C) with generators (u^2 + 1, u*v)

julia> dimension(std(J)) == 0
true

Containment

Base.containsMethod
contains(I::sideal{S}, J::sideal{S}) where S

Return true if the ideal $I$ contains the ideal $J$. This will be expensive if $I$ is not a Groebner ideal, since its standard basis must be computed.

Examples

julia> R, (x , y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, x^2 + 1, x*y)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2 + 1, x*y)

julia> J = Ideal(R, x^2 + 1)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2 + 1)

julia> contains(I, J) == true
true
source

Comparison

Checking whether two ideals are algebraically equal is very expensive, as it usually requires computing Groebner bases. Therefore we do not overload the == operator for ideals. Instead we have the following two functions.

Base.isequalMethod
isequal(I1::sideal{S}, I2::sideal{S}) where S <: SPolyUnion

Return true if the given ideals have the same generators in the same order. Note that two algebraically equal ideals with different generators will return false.

source
Singular.equalMethod
equal(I1::sideal{S}, I2::sideal{S}) where S <: SPolyUnion

Return true if the two ideals are contained in each other, i.e. are the same ideal mathematically. This function should be called only as a last resort; it is exceptionally expensive to test equality of ideals! Do not define == as an alias for this function!

source

Examples

julia> R, (x , y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, x^2 + 1, x*y)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2 + 1, x*y)

julia> J = Ideal(R, x^2 + x*y + 1, x^2 - x*y + 1)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2 + x*y + 1, x^2 - x*y + 1)

julia> isequal(I, J) == false
true

julia> equal(I, J) == true
true

Intersection

Singular.intersectionMethod
intersection(I::sideal{S}, J::sideal{S}) where {T <: Nemo.RingElem, S <: Union{spoly{T}, spluralg{T}}}

Return the intersection of the two given ideals.

Examples

julia> R, (x , y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, x^2 + 1, x*y)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2 + 1, x*y)

julia> J = Ideal(R, x^2 + x*y + 1, x^2 - x*y + 1)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2 + x*y + 1, x^2 - x*y + 1)

julia> V = intersection(I, J)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (y, x^2 - x*y + 1)
source

Quotient

Singular.quotientMethod
quotient(I::sideal{S}, J::sideal{S}) where S <: spoly

Return the quotient of the two given ideals. Recall that the ideal quotient $(I:J)$ over a polynomial ring $R$ is defined by $\{r \in R \;|\; rJ \subseteq I\}$.

Examples

julia> R, (x , y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, x^2 + 1, x*y)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2 + 1, x*y)

julia> J = Ideal(R, x + y)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x + y)

julia> V = quotient(I, J)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (y, x^2 + 1)
source
Singular.quotientMethod
quotient(I::sideal{S}, J::sideal{S}) where S <: spluralg

Return the quotient of the two given ideals, where $J$ must be two-sided.

source

Leading terms

Singular.leadMethod
lead(I::sideal{S}) where S <: SPolyUnion

Return the ideal generated by the leading terms of the polynomials generating $I$.

Examples

julia> R, (x , y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, x^2 + 1, x*y)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2 + 1, x*y)

julia> V = lead(I)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2, x*y)
source

Homogeneous ideals

Singular.is_homogeneousMethod
is_homogeneous(I::sideal)

Return true if each stored generator of I is homogeneous, otherwise false. If base_ring(I) has a weighted monomial ordering, the test is conducted with respect to the corresponding weights.

source
Singular.homogenizeMethod
homogenize(I::sideal{S}, v::S) where S <: spoly

Multiply each monomial in the generators of I by a suitable power of the variable v and return the corresponding homogeneous ideal. The variable v must have weight 1.

source

Saturation

Singular.saturationMethod
saturation(I::sideal{T}, J::sideal{T}) where T <: Nemo.RingElem

Return the saturation of the ideal $I$ with respect to $J$, i.e. returns the quotient ideal $(I:J^\infty)$ and the number of iterations.

Examples

julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, (x^2 + x*y + 1)*(2y^2+1)^3, (2y^2 + 3)*(2y^2+1)^2)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (8*x^2*y^6 + 8*x*y^7 + 12*x^2*y^4 + 12*x*y^5 + 8*y^6 + 6*x^2*y^2 + 6*x*y^3 + 12*y^4 + x^2 + x*y + 6*y^2 + 1, 8*y^6 + 20*y^4 + 14*y^2 + 3)

julia> J = Ideal(R, 2y^2 + 1)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (2*y^2 + 1)

julia> S = saturation(I, J)
(Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (2*y^2 + 3, x^2 + x*y + 1), 2)
source

Standard basis

Statistics.stdMethod
std(I::sideal{S}; complete_reduction::Bool=false) where S <: SPolyUnion

Compute a Groebner basis for the ideal $I$. Note that without complete_reduction set to true, the generators of the Groebner basis only have unique leading terms (up to permutation and multiplication by constants). If complete_reduction is set to true (and the ordering is a global ordering) then the Groebner basis is unique.

source
Singular.fglmMethod
fglm(I::sideal{spoly{T}}, ordering::Symbol) where T <: Nemo.RingElem

Compute a Groebner basis for the zero - dimensional ideal $I$ in the ring $R$ using the FGLM algorithm. All involved orderings have to be global.

source
Singular.satstdMethod
satstd(I::sideal{spoly{T}}, J::sideal{spoly{T}} = Ideal(base_ring(I), gens(base_ring(I)))) where T <: Nemo.RingElem

Given an ideal $J$ generated by variables, computes a standard basis of saturation(I, J). This is accomplished by dividing polynomials that occur throughout the std computation by variables occurring in $J$, where possible. Thus the result can be obtained faster than by first computing the saturation and then the standard basis.

source
Singular.lift_stdMethod
lift_std(M::sideal{S}; complete_reduction::Bool = false) where S <: spoly

Computes the Groebner base G of M and the transformation matrix T such that (Matrix(G) = Matrix(M) * T)

source
Singular.lift_std_syzMethod
lift_std_syz(M::sideal{S}; complete_reduction::Bool = false) where S <: spoly

Computes the Groebner base G of I, the transformation matrix T and the syzygies of M. Returns G,T,S (Matrix(G) = Matrix(I) * T, 0=Matrix(M)*Matrix(S))

source

Examples

julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, x^2 + x*y + 1, 2y^2 + 3)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2 + x*y + 1, 2*y^2 + 3)

julia> J = Ideal(R, 2*y^2 + 3, x^2 + x*y + 1)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (2*y^2 + 3, x^2 + x*y + 1)

julia> A = std(I)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (2*y^2 + 3, x^2 + x*y + 1)

julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, (x*y + 1)*(2x^2*y^2 + x*y - 2) + 2x*y^2 + x, 2x*y + 1)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (2*x^3*y^3 + 3*x^2*y^2 + 2*x*y^2 - x*y + x - 2, 2*x*y + 1)

julia> J = Ideal(R, x)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x)

julia> B = satstd(I, J)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x - y - 1, 2*y^2 + 2*y + 1)

julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"], ordering = :lex)
(Singular polynomial ring (QQ),(x,y,z),(lp(3),C), spoly{n_Q}[x, y, z])

julia> I = Ideal(R, y^3+x^2, x^2*y+x^2, x^3-x^2, z^4-x^2-y)
Singular ideal over Singular polynomial ring (QQ),(x,y,z),(lp(3),C) with generators (x^2 + y^3, x^2*y + x^2, x^3 - x^2, -x^2 - y + z^4)

julia> J = fglm(I, :degrevlex)
Singular ideal over Singular polynomial ring (QQ),(x,y,z),(lp(3),C) with generators (z^12, y*z^4 - z^8, y^2 + y - z^8 - z^4, x*y - x*z^4 - y + z^4, x^2 + y - z^4)

Reduction

Base.reduceMethod
reduce(I::sideal{S}, G::sideal{S}) where S <: SPolyUnion

Return an ideal whose generators are the generators of $I$ reduced by the ideal $G$. The ideal $G$ need not be a Groebner basis. The returned ideal will have the same number of generators as $I$, even if they are zero. For PLURAL rings (S <: spluralg, GAlgebra, WeylAlgebra), the reduction is only a left reduction, and hence cannot be used to test containment in a two-sided ideal. For LETTERPLACE rings (S <: slpalg, FreeAlgebra), the reduction is two-sided as only two-sided ideals can be constructed here.

source
Base.reduceMethod
reduce(p::S, G::sideal{S}) where S <: SPolyUnion

Return the polynomial which is $p$ reduced by the polynomials generating $G$. The ideal $G$ need not be a Groebner basis. For PLURAL rings (S <: spluralg, GAlgebra, WeylAlgebra), the reduction is only a left reduction, and hence cannot be used to test membership in a two-sided ideal. For LETTERPLACE rings (S <: slpalg, FreeAlgebra), the reduction is the full two-sided reduction as only two-sided ideals can be constructed here.

source

Examples

julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> f = x^2*y + 2y + 1
x^2*y + 2*y + 1

julia> g = y^2 + 1
y^2 + 1

julia> I = Ideal(R, (x^2 + 1)*f + (x + y)*g + x + 1, (2y^2 + x)*f + y)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^4*y + 3*x^2*y + x*y^2 + y^3 + x^2 + 2*x + 3*y + 2, 2*x^2*y^3 + x^3*y + 4*y^3 + 2*x*y + 2*y^2 + x + y)

julia> J = std(Ideal(R, f, g))
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (y^2 + 1, x^2 - y + 2)

julia> V = reduce(I, J)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x + 1, y)

julia> h1 = (x^2 + 1)*f + (x + y)*g + x + 1
x^4*y + 3*x^2*y + x*y^2 + y^3 + x^2 + 2*x + 3*y + 2

julia> h2 = reduce(h1, J)
x + 1

Elimination

Singular.eliminateMethod
eliminate(I::sideal{S}, polys::S...) where {T <: Nemo.RingElem, S <: Union{spoly{T}, spluralg{T}}}

Given a list of polynomials which are variables, construct the ideal corresponding geometrically to the projection of the variety given by the ideal $I$ where those variables have been eliminated.

Examples

julia> R, (x, y, t) = polynomial_ring(QQ, ["x", "y", "t"])
(Singular polynomial ring (QQ),(x,y,t),(dp(3),C), spoly{n_Q}[x, y, t])

julia> I = Ideal(R, x - t^2, y - t^3)
Singular ideal over Singular polynomial ring (QQ),(x,y,t),(dp(3),C) with generators (-t^2 + x, -t^3 + y)

julia> J = eliminate(I, t)
Singular ideal over Singular polynomial ring (QQ),(x,y,t),(dp(3),C) with generators (x^3 - y^2)
source

Syzygies

Singular.syzMethod
syz(I::sideal)

Compute the module of syzygies of the ideal.

Examples

julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, x^2*y + 2y + 1, y^2 + 1)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2*y + 2*y + 1, y^2 + 1)

julia> F = syz(I)
Singular module over Singular polynomial ring (QQ),(x,y),(dp(2),C), with generators:
x^2*y*gen(2)-y^2*gen(1)+2*y*gen(2)+gen(2)-gen(1)

julia> M = Singular.Matrix(I)
[x^2*y + 2*y + 1, y^2 + 1]

julia> N = Singular.Matrix(F)
[-y^2 - 1
x^2*y + 2*y + 1]

julia> iszero(M*N)  # check they are actually syzygies
true
source

Free resolutions

Singular.fresMethod
fres(id::sideal{spoly{T}}, max_length::Int, method::String="complete") where T <: Nemo.FieldElem

Compute a free resolution of the given ideal up to the maximum given length. The ideal must be over a polynomial ring over a field, and a Groebner basis. The possible methods are "complete", "frame", "extended frame" and "single module". The result is given as a resolution, whose i-th entry is the syzygy module of the previous module, starting with the given ideal/module. The max_length can be set to $0$ if the full free resolution is required.

source
Singular.sresMethod
sres(id::sideal{spoly{T}}, max_length::Int) where T <: Nemo.FieldElem

Compute a (free) Schreyer resolution of the given ideal up to the maximum given length. The ideal must be over a polynomial ring over a field, and a Groebner basis. The result is given as a resolution, whose i-th entry is the syzygy module of the previous module, starting with the given ideal. The max_length can be set to $0$ if the full free resolution is required.

source

Examples

julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"])
(Singular polynomial ring (QQ),(x,y),(dp(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, x^2*y + 2y + 1, y^2 + 1)
Singular ideal over Singular polynomial ring (QQ),(x,y),(dp(2),C) with generators (x^2*y + 2*y + 1, y^2 + 1)

julia> F1 = fres(std(I), 0)
Singular resolution: R^1 <- R^2 <- R^1

julia> F2 = sres(std(I), 2)
Singular resolution: R^1 <- R^2 <- R^1

Differential operations

Singular.jetMethod
jet(I::sideal{S}, n::Int) where {T <: Nemo.RingElem, S <: Union{spoly{T}, spluralg{T}}}

Given an ideal $I$ this function truncates the generators of $I$ up to degree $n$.

Examples

julia> R, (x, y, z) = polynomial_ring(QQ, ["x", "y", "z"])
(Singular polynomial ring (QQ),(x,y,z),(dp(3),C), spoly{n_Q}[x, y, z])

julia> I = Ideal(R, x^5 - y^2, y^3 - x^6 + z^3)
Singular ideal over Singular polynomial ring (QQ),(x,y,z),(dp(3),C) with generators (x^5 - y^2, -x^6 + y^3 + z^3)

julia> J1 = jet(I, 3)
Singular ideal over Singular polynomial ring (QQ),(x,y,z),(dp(3),C) with generators (-y^2, y^3 + z^3)
source

Operations on zero-dimensional ideals

Singular.vdimMethod
vdim(I::sideal{S}) where {T <: Nemo.FieldElem, S <: Union{spoly{T}, spluralg{T}}}

Given a zero-dimensional ideal $I$ this function computes the dimension of the vector space base_ring(I)/I, where base_ring(I) must be a polynomial ring over a field, and $I$ must be a Groebner basis. The return is $-1$ if !is_zerodim(I).

source
Singular.kbaseMethod
kbase(I::sideal{S}) where {T <: Nemo.FieldElem, S <: Union{spoly{T}, spluralg{T}}}

Given a zero-dimensional ideal $I$ this function computes a vector space basis of the vector space base_ring(I)/I, where base_ring(I) must be a polynomial ring over a field, and $I$ must be a Groebner basis. The array of vector space basis elements is returned as a Singular ideal, and this array consists of one zero polynomial if !is_zerodim(I).

source
Singular.highcornerMethod
highcorner(I::sideal{S}) where {T <: Nemo.FieldElem, S <: Union{spoly{T}, spluralg{T}}}

Given a zero-dimensional ideal $I$ this function computes its highest corner, which is a polynomial. The ideal must be over a polynomial ring over a field, and a Groebner basis. The return is the zero polynomial if !is_zerodim(I).

source

Examples

julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]; ordering=:negdegrevlex)
(Singular polynomial ring (QQ),(x,y),(ds(2),C), spoly{n_Q}[x, y])

julia> I = Ideal(R, 3*x^2 + y^3, x*y^2)
Singular ideal over Singular polynomial ring (QQ),(x,y),(ds(2),C) with generators (3*x^2 + y^3, x*y^2)

julia> I = std(I)
Singular ideal over Singular polynomial ring (QQ),(x,y),(ds(2),C) with generators (3*x^2 + y^3, x*y^2, y^5)

julia> n = vdim(I)
7

julia> J = kbase(I)
Singular ideal over Singular polynomial ring (QQ),(x,y),(ds(2),C) with generators (y^4, y^3, y^2, x*y, y, x, 1)

julia> f = highcorner(I)
y^4

Operations over local rings

If the base ring R is a local ring, a minimal generating set can be computed using the following function

Singular.minimal_generating_setMethod
minimal_generating_set(I::sideal{S}) where S <: spoly

Given an ideal $I$ in ring $R$ with local ordering, this returns an array containing the minimal generators of $I$.

source

Examples

julia> R, (x, y) = polynomial_ring(QQ, ["x", "y"]; ordering=:negdegrevlex)
(Singular polynomial ring (QQ),(x,y),(ds(2),C), spoly{n_Q}[x, y])

julia> has_local_ordering(R) == true
true

julia> I = Ideal(R, y, x^2, (1 + y^3) * (x^2 - y))
Singular ideal over Singular polynomial ring (QQ),(x,y),(ds(2),C) with generators (y, x^2, -y + x^2 - y^4 + x^2*y^3)

julia> min = minimal_generating_set(I)
2-element Vector{spoly{n_Q}}:
 x^2
 y

Independent sets of monomial ideals

Let $I$ be an ideal of $K[x_1, ..., x_n].$ An independent set is a subset $u \subseteq \{x_1, ..., x_n\},$ such that $I \cap K[u]= 0.$ In case $u$ cannot be enlarged, it is called non-extendable independent set. If in addition $|u| = dim(K[x_1, ..., x_n]/I),$ $u$ is called maximal independent set. Using Singular.jl one can compute non-extendable, resp. maximal independent sets for monomial ideals. If an arbitrary ideal $I$ is passed to the function, the computation is performed on the leading ideal of $I$.

Singular.independent_setsMethod
independent_sets(I::sideal{spoly{T}}) where T <: Nemo.FieldElem

Return all non-extendable independent sets of $lead(I)$. $I$ has to be given by a Groebner basis.

source
Singular.maximal_independent_setMethod
maximal_independent_set(I::sideal{spoly{T}}; all::Bool = false) where T <: Nemo.FieldElem

Returns, by default, an array containing a maximal independent set of $lead(I)$. $I$ has to be given by a Groebner basis. If the additional parameter "all" is set to true, an array containing all maximal independent sets of $lead(I)$ is returned.

source
julia> R, (x, y, u, v, w) = polynomial_ring(QQ, ["x", "y", "u", "v", "w"])
(Singular polynomial ring (QQ),(x,y,u,v,w),(dp(5),C), spoly{n_Q}[x, y, u, v, w])

julia> has_local_ordering(R) == true
false

julia> I = Ideal(R, x*y*w, y*v*w, u*y*w, x*v)
Singular ideal over Singular polynomial ring (QQ),(x,y,u,v,w),(dp(5),C) with generators (x*y*w, y*v*w, y*u*w, x*v)

julia> I = std(I)
Singular ideal over Singular polynomial ring (QQ),(x,y,u,v,w),(dp(5),C) with generators (x*v, y*v*w, y*u*w, x*y*w)

julia> L1 = independent_sets(I)
5-element Vector{Vector{spoly{n_Q}}}:
 [x, y, u]
 [y, u, v]
 [x, u, w]
 [u, v, w]
 [y, w]

julia> L2 = maximal_independent_set(I)
3-element Vector{spoly{n_Q}}:
 x
 y
 u

julia> L3 = maximal_independent_set(I, all = true)
4-element Vector{Vector{spoly{n_Q}}}:
 [x, y, u]
 [y, u, v]
 [x, u, w]
 [u, v, w]